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Pr imary  goal  of  adapt ive  observers  would be to est imate the true states of  a plant .  Identi-  

f icat ion of  u n k n o w n  parameters  is of  secondary  interest and  is achieved frequent ly with the 

persistent  exci ta t ion cond i t ion  of  some regressors. Nevertheless,  two problems  are l inked to each 

o ther  in the classical approaches  to adapt ive  observers;  as a result, we get a good state est imate 

once after a good paramete r  est imate is obta ined .  This  paper  focuses on the state es t imat ion  

wi thou t  pa ramete r  ident i f ica t ion so that  the state is est imated regardless of  persis tent  excitat ion.  

In this  d i rect ion of  research,  Besancon (2000) recently summar ized  that  most  of  adapt ive  

observers  in the l i terature  share  one c o m m o n  canonica l  |o rm,  in which  u n k n o w n  parameters  do 

not  affect the unmeasured  states. We enlarge the class of  l inear  systems from the canon ica l  form 

of  (Besancon.  20001) by p ropos ing  an adapt ive  observer  (with add i t iona l  dynamics)  tha t  a l lows 

u n k n o w n  parameters  to affect those unmeasured  states. A recursive a lgor i thm is presented to 

design the p roposed  dynamic  observer  systematically.  An example  conf i rms the design procedure  

with a s imula t ion  result. 

Key W o r d s : A d a p t i v e  Observer ,  L inear  System, U n k n o w n  Parameter ,  Persistent  Exci tat ion,  

Passivi ty 

I. Introduction 

The  design of  adapt ive  observers  u has received 

cons ide rab le  a t t en t ion  in the last several years. 

The  first c o n t r i b u t i o n  to adapt ive  observer  design 

was made  in (Car ro l l  and  Lindorfe,  1973) for 

l inear  t i rne - inva r i an t  systems with u n k n o w n  para-  

meters. Sincc then,  many  interest ing results have 

been reported in the l i terature.  Based on a new 
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canonica l  | b r m  lbr  a l inear  system, a s ignif icant ly  

s implif ied observer  s t ructure  was suggested by 

kuders  and N a r e n d r a  (1973:  1974). The  con-  

s t ruct ion of  adapt ive  observers  with a rb i t ra r i ly  

high rates of  convergence  was cons idered  in 

(Kreisselmeier ,  1977). Several years later, an 

adapt ive  observer  for n o n l i n e a r  systems was pro- 

posed in (Bastin and  Gevers,  1988) by ex tending  

the result of  (Luders  and  Narendra ,  1974). 

However,  most of  adapt ive  observers  in the 

l i terature require  the cond i t ion  of  persistent  ex- 

c i ta t ion for the regressor in order  to have the state 

1) Some authors refer to 'adaptive observer" as an ob- 
server that yields both the state and the parameter 
estimates. In this paper, it just means an observer 
which has a parameter update law regardless of its 
conx ergence. 
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estimate.  In case of  a fo rement ioned  l inear  adap-  

tive observers,  the observer  includes a parameter  

identif ier  so that  they first est imate u n k n o w n  

parameters  (which is usually achieved under  the 

persistent exci ta t ion cond i t ion)  and then tile 

s t andard  Luenberger  observer  t echn ique  is ap- 

plied to est imate the stage. On tile o ther  hand ,  tile 

adapt ive  observer  proposed m (Mar ino ,  1990; 

Mar ino  and Tomei .  1992) is designed l\~r the 

+adaptive observer  canon ica l  torm'  and the persis- 

tent exci ta t ion is not required as long as the 

system h:ts the canon ica l  f o r m  If tile system is ,lot 

in the canon ica l  form, some paramete r  dependen t  

coord ina te  change  needs 6o be appl ied to t rans-  

form the system into the canon ica l  form, so that  

parameter  es t imat ion  becomes necessary to haxe 

the est imate of states in the or ig inal  coordinates .  

In this paper.  ,a.e cons ider  a system given by 

2 = A x + B u ~ - G O  
(I) 

3' = C x  

where x is tile staGe in R " ,  u the input  in R m, y 

tile ou tpu t  in R p. and 0 i s  a ,,ector of  u n k n o w n  

cons tan t  parameters  in R q. Since 6' is a cons tan t  

matrix,  it is not likely to be persistently excited l\)r 
s e v e r a l  u n k n o w n  parameters .  

When  ~ e  do not have persistently excited re- 

gressors like ( I ) ,  the class of  systems admi t t ing  

an adapt ive  observer  is quite restricted. In 

I Besancon,  20001, Besancon presented a unified 

f ramework  for many  exist ing adapt ive  observers  

that  do not  require pa ramete r  est imationZ( Ac- 

co rd ing  to (Besancon,  2000),  ahnos t  all adapt ive  

obserxers  in tile l i terature,  that  can est imate the 

state x wi thout  first es t imat ing  0, have  been 

designcd for the fo l lowing par t i cu la r  class of  

systems : 

9 = A ~ y  + Ay,,z + Byu  + G,.O 
( 2 ) 

2 = A~3 '  + Azbz  + B z u  

where y is the ou tpu t  of  the system and Azb is 

Hurwitz.  In this form, (9 does not aft'cot the 

2) [I1 {Besancon. 20001, parameter  est imation is a bonus 

whell the regressors, are persistently excited. Also. note 

that only linear ~.ystems are dealt ,aith in this paper 

while nonl inear  systems are considered in (Besancoll. 

2000 :. 

unmeasured  state z. 

We present in this paper  a new adapt ive  ob-  

server for different classes of  systems from 12). in 

which uncer ta in  parameters  enter  the unmeasured  

states. Whi le  the design requires no hypothes is  of  

persistent exci tat ion,  what  is assunled in this pa- 

per is the [\)l lowing : 

Assumption 1. Let us define 

H~. " = CE'['t 

CiI1 ~ 

For the system t l ), there exists an integer r ! 1 <_ 

r) such that 

1. H,._tG=O, and 

2. there are sonte matrk'es L,  P, F o f  appropriate 

dimensions satisf)'hTg 

P ( A - L H ? + ( A - L H r l T P < O  (3a) 

PC,= I I  r F  ~ 3b~ 

P > 0  ( 3c/ 

Remark 1. h is presupposed in this a s sumpt ion  

that  r _ > l .  However.  when the cond i t ions  (3a~ 

(3c) hold with , , '=0,  the system (I) is the very 

case cons idered  in (Besancon,  2000),  and the 

s tandard  t echn ique  can be appl ied  to ob ta in  an 

adapt ive  observer.  (This  t echn ique  also appears  

as the init ial  step of  the proposed  recurs ion in this 

paper.)  I I ' ( C , A )  is an obse rvab le  pair, then tile 

cond i t ions  (3a ) -  (3c) become easy to hold as l" in 

creases, since the co lumn  and tile row spaces of  

H,- are enlarged:  on the o ther  hand,  the cond i t ion  

H r - t G = O  gets more  restrictive. Therefore ,  each r 

character izes  its o,xn class of systems. 

As an example,  cons ider  the system 

y : Z~.'I, ]('l:X2, 
.(=,=z+ gL, O. (41 

where A z  is Hurwitz,  Clearly,  it is not in the 

adapt ive  observer  form proposed  m {Besancon, 

2000),  but can be shown  to satisfy Assumpt ion  1 

with r = l .  An interest ing way to show this is 

to apply the t echn ique  of (Besancon,  20()0), 

as,suming that  the ou tpu t  y is H i x = [ x l ,  xe] 1 so 
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that x2 is also measurable. Then,  the system (4) 

becomes in the adaptive observer form of (2), and 

thus it admits the error Lyapunov function sug- 

gested in (Besancon, 2000), which has the posi- 

tive definite matrix P = d i a g  { Izxz, Pz } where P~ 

is such that P , A ~ + A r p ~ < o .  Finally,  it is easy to 

show that the matrix P satisfies Assumption I. 

In the next section, we present a dynamic 

adaptive observer for (I) only under  Assumption 

1, followed by the recursive algori thm to design 

the gains of the proposed observer in a systematic 

manner.  Section 3 illustrates a design cxample 

with a s imulat ion result. Conclus ions  are found 

in Section 4. 

2. Main Results  

For  the system (1) that satisfies Assumption 1, 

we propose a dynamic adaptive observer of the 

form : 

O = ~ ( C ~ - y l  +¢)~A 

~ = A 2 + B u + G O + N ~ ( C 2 - y )  +N~A (5) 

,~ = ~r~ ( C 2 - y ) + ~ A  

where £ is the estimate of the true state x, and 

o ~ g  q and ,~=g rp are the internal  states of addi- 

t ional dynamics (thus, we know their values). 

Then, the observer problem is solved if we design 

all ~ = [ ¢ ~ ,  Cb], N = E N a ,  N~] and gr=Egra, 

grb] matrices so that, by defining 0 : : 0 - -  0 and 

e : = £ ' - - x ,  the fol lowing error dynamics 

= ~ C e  + ~ A  

= A e  + Gff  + N~Ce + NbA (6) 

guarantees that e(t)--~ 0 and A(t) --+ 0 as t -- '  c~, 

in the sense that there exist positive definite 

matrices P and Q satisfying 

(Indeed, LaSalle Yoshizawa theorem, (Krstic et 

al., 1995, p. 24), proves the convergence. Note 

that the d imension of Q is lower than P because 

we are not interested in the convergence of 0.) 

In the subsequent part of  the paper, we will 

show the design of the matrices q), N and ~ by 

a recursive algorithm. Therefore, the main contri-  

but ion of the paper is summarized as 

Theorem 1. For the system (I) satisfying As- 
sumption 1, there exists a dynamic adaptive ob- 
server (5) with additional A-dynamics o f  order 
( r × p ) ,  so that )g(t)---~ x ( t )  as t---.oo 

The idea of the construction of (5) is to as- 

sume, in the beginning,  that H r e =  ( H r £ ' - H r x )  
is available for measurement although it is not 

true since Hrx  is not all measurable. Then,  the 

standard technique of adaptive observer yields 

an adaptive observer with an error Lyapunov 

matrix pair P and Q of appropriate sizes. Now 

we change our virtual assumption so that Hr-~e 
is available tbr measurement  but  C A r e  is not. 

Then,  the designed observer in the previous step 

is not implementable since it depends on the 

signal CAme. Thus we extract the signal C A r e  
from the observer structure and design addi- 

t ional dynamics with which the use of C A r e  is 

eliminated. In the next step, we proceed by as- 

suming that H~-ze is measurable but CAr-~e is 

not. The recursion goes to the end if we get a 

dynamic observer that requires only the measure- 

ment of Hoe= Ce but not others. 

The recursion begins by the following initial  

step. 

2.1 Initial step 

Assuming that [Ire is measurable, we choose 

our initial error system Sr as follows (compare 
this with (6)):  

i ~=-UHre  =DIaHT ~e+D~(CAre) 
Sr L ~=GO+Ae-LHre=GO+ Ae-D2aHr-~e-D2b(CA e) 

where F and L are given in Assumption I and 

- F r = [ D l a ,  Dlb] and L=[D2~,  D2~]. Clearly, 

this error system is obtained from the observer 

~ = - F V ( H r 2 - H r x )  

,~: = G O + A 2  + B u  - L ( H~2 - Hrx  ) . 
(7) 

Error convergence easily follows since, with 
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1 
7 = [ t ?  r, e r ]  r, the function V ( 7 ) = ~  7rPY = 

2 ~ e rPe  satisfies that 

V = O r  ( -  FrHre)  + e rPGO+ e r P ( A -  LH,-) e 
= -- e TQc 

where Q = - s y m  {P(A-LH~)}, in which sym 

{ A ) denotes l(A+Ar), is positive definite by 

Assumption I. 

2.2 Reeursive design 
Suppose that a system Ss (k is an index be- 

tween 0 and r and the recursion begins when k =  

r and ends with k = 0 )  given by 

~=~2H¢ + D~3A=DI~Hh_Ie+ D~3A + D~v~ CA~ el 

£ : ~=GO+Ae+~dtke+~3A=GO+Ae+I~dL_~e+gA*[~e!CA~e) 

),= D~H,e +~s~=Djh-te+D3j,+D3~:CA~e; 

where O E R  q, e ~ R  n and A ~ R  p¢r-s~. The 

matrices G, A and Hs (from m and C) are given 

in (1), and all D matrices have appropriate 

dimensions (for example, D~z=[D~, D~bJ). Note 

that ,~ is null  when k = r ,  but increases its 

dimension as the recursion proceeds. 

The system Ss will be concisely denoted by 

? = F T + D ~ v  + w (8) 

were 7 = [ t ~  r, e T, AT] r, D ~ = [ D ~ ,  Df~, Df~] and 

0 D~Hs-~ D~a ] 

F =  G A + D2~Hs_I /)23 (9) 

0 Da~Hs-~ Daa 

if v and w are taken as 

v = C A S e  and w = 0  (10) 

By introducing v (and the zero input w) the 

system Sk is now decomposed into the term in- 

cluding CASe  and the rest. However, since C A  s 

e is not available [br measurement (when k 2 1 ) ,  

we will propose an alternative design of v and u, 

which depend only on Hk-~e and the state of 

added dynamics that is known to observer. Betbre 

presenting the alternative design of v and w, we 

confirm the lbl lowing claim holds lbr S,~ at this 

stage. 

Cla im 1. There exist positive definite matrices 
P = R  ~q+n+p~-sm and @ ~ R  on+per-sin such that, 

1 
with V(7 )  = ~  7rPT, 

(z= ~,r p ( FT  + Db (CASh'z) ) 

= [ 21T [ 21 ,1 , ,  
'73 '73 

where 7 e = e  and ~'3=,~. 

The equat ion (I 1) implies that, if v and w are 

taken as (10), then the states e and A of the system 

Ss converge to zero. This claim holds true from 

the initial step when k = r  and will be justified by 

Corol lary 1 as the recursion proceeds. 

Now we assume that Hk-xe is available for 

measurement but CASe is not. Then, the lbllow- 

ing theorem shows that, by attaching addi t ional  

dynamics, we can design an alternative v and w, 

instead of (10), that does not depend on the 

unmeasurable  quanti ty CASe.  

Theorem 2. Suppose that the system (8) satisfies 

Claim 1 when v and u, are taken as (10). I f  the 

following dynamic system is appended to (8) 

~=-v-CAk-lD2bv-CAk-l~aHk Ie-CAk-ID2.a~ (12a) 

y =  7+ CAS-~e (12b) 

then the system (8) and (12) guarantees that the 

states e, ,~ and q converge to zero b)" redesigning 

v = ~ y ,  u,=(FDb+D6CASDz~)y - : Wsy (13) 

in which y is measurable i f  ilk le is assumed to be 
measurable. The matrix gain Vs is chosen so that 

: Q [-'e !cwl - 
Q," 0 >0 (14) 

Remark 2. Note that the linear matrix inequality 

(14) always has a solution that is V h = ¢ I w i t h  

sufficiently large ¢ > 0 .  

Corollary 1. Under the assumptions o f  Theorem 
2, the augmentedsystem (8), (12) and (13) can 
be written as a single system : 
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de 

L~J 

0 Dz~_I+(Dl~P~42CA ~-* DI,, DI~I'~+~,, 

[ A+D~&-I * ( 

+ k-i ~ [ r 

7 -CA~-~&-~ 
0 L_q+CA,.IDI~ V£,g_l. -CA~%z -,J+CA~%; i~ 

where W r = [ W~,, wkr,2, W~a 1. For this system, 
it follows that 

dt eA P : -  O. 

where 

°i >0 /,6i 
O =  T,rQ,  T , > O  (17) 

T I - I+D~[0  C A  ~-~ 0 D~ 
=L [o CA ~-' o]] I ] (~8) 

in which, T ,  is the lower-right block o f  T with the 
size o f  ( n + p ( r - k + l ) )  by ( n + p ( r - k + l ) ) ,  
Le., 

F FD~CA~-~o [Dz~]l 

Finally the recursion procedure is quite ob- 

vious. By the initial step, Claim I holds tbr Sr 
and Corollary I presents the system Sr-~ by the 

equation (15). Indeed the new Du matrices are 
identified by redefining [/l r, 7"IT] r a s  the new /l 

and by extracting c A r - X e  term. Then Claim 1 

again holds for S~-~, which enables to apply 

Corollary 1 to the system S'~_~ and the system 

S~-2 is obtained. This recursion will end with S~, 

because Theorem 2 will yield an implementable 

adaptive observer (i.e., the system So). As a 

result, the system (15) of Corollary 1 will be the 

same as (6), and all matrices ~ ,  N a n d  ~ o f  (5) 
are derived straightforwardly. 

Proof o f  Theorem 2 and Corollary 1. 
First of all, note that 

= ( -  v -  CA~-~D2~v- CAk-lo~dL le -  CA ~ ~D~32) 
+ CA k-~ (GO+Ae +Dzdtk-w+i~A+l~bv) 

= - v + CAke 

where the assumption that Hr I G = 0  (Assump- 
tion l) is used. 

We now define 

~=7+D~35 (19) 

Then 

~= F? '+ Dbv + w-Dbv  +DbCAk~,2 
=F~-FD~y+DoCAk&-D~CAk~bY+ w (20) 

Also, let 

1 r , 1 r V(~ e, _~) = y  ~" P ~ - - e ~ y  y (21) 

be a Lyapunov function candidate for the aug- 

mented system A'~ and (12). Then, the derivative 
of V becomes 

; --; P F¢+D£A ¢=,,'-¢ P,FD~rD£A/~,'y+¢ Pw 
_yrr+yrCA~6_},rCA%y by (20) 

:-[~.~(]o]~r,~r]r-yrt')'rCA~:-fCAk~b5 ' by (11) and (13). 

The last equality can be rewritten using (14) as 

Therefore, it is concluded, by LaSalle-Yoshizawa 

theorem, that ~e2, ~ea and y converge to zero, which 

in turn implies the states e, ~ and 77 converge to 
zero by (19) and (12). 

To prove Corollary 1, we would simply need to 

express in the original coordinates the augmented 

system (1), the function V(~,  35 ) of (21) and Q,  

of (22). In fact, through (19) and (12b), the 

states ? '=  [0, e, ~] and r? are transformed to qe 

and 35. This can be written concisely by 

where T i s  already given by (18). 

3. Design Example 

The mechanical system shown in Fig. 1 is 

composed of a, mass-spring-damper system and 
an actuator that generates the force F .  We assume 
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' 12  , 

F ,~---"~, ~ k ' ~, 

Fig. I Mechanical system example 

that the actuator has dynamics as tbllows : 

F = -  a F  + u (23) 

where a is the time constant and u is the control  

input. Suppose that not only the force F gen- 

erated by the actuator, but also an unknown 

constant force 0 drives the system. The equat ion 

of  mot ion is given by 

M 2 +  c 2 +  k z = F  + O (24) 

where M,  c, k are the mass, the damping co- 

efficient, and the spring constant of  the system. 

respect ively .  By choosing the state variables x =  

[x~, x2, xs] r =  [z, 2, F]  r and assuming  that  the 

displacement z is measured, we have the state 

space m o d e l :  o 
k c 

~'= --M -M 
0 0 - a  

y= )  0 o ) =  Cx 

l 0 x+ 01 u+ 0 = Ax+Bu+GO 
(25) 

When the system parameters are given that M =  I, 

k = 0 . 5 ,  c=0 .3 ,  and a = 1.5, it can be shown that 

Assumption I holds with r = l  and with 

[ !1 l = °  9= -''=' L = -0.5 - .3 Q= 9.6667 6.0000 -3.3333 1" 

0 _ 00000 j 

[ ,0.0000 3.oooo-3.3333] 

[ -3.3333 0 6.6667 

With r =  1, the system S~ in Section 2.2 satisfies 

Claim 1. Indeed, the initial step of  Section 2.1 

guarantees the claim with the updated P and Q, 

that is, diag { 1, P } and O. 

However,  since C A e  is not available for 

measurement,  we proceed one step further using 

Theorem 2. Hence, the fol lowing adaptive ob- 

server is ob ta ined :  

6 [  . . . . . . . . . . . . .  ' - ' '--'x2 

4 L / x  L~ - -  . . . . . . . . . . . .  

It\ ,~ / 

5 10 ~5 20 25 3O 
~,me 

1 5 • - 

IP, / \  , I 

%/t,./'.,/",, ,/",,, /% 1 
' I , * i i 

-I0 5 i o  t5 2 0  25 

1 5 r  
Plot OI t I 

I 

0 5  I 

-oq/ v 

5 10 

Fig. 2 Simulation results 

O=Dla( C 2 - y )  + D2~v+ wl 

~ = A 2  + G O +  D2a( C 2 - y )  + B u +  D~bv+ w2 

0 = - v - CD2~v - CD2a ( C 2 - y )  

where 

D,~=-3. D~b=-6.0667, Dza=!-I 0.5 O] T, Ozb=[-2 0.3 -I1 r 

wl= ( Dl~HoDzb + DIbC ADzb) ) 

~= [ GD~b + (A + D2.C) D2b + I~.bCAD~]) 

v= I0) 

)=~+C.f-y  

The simulat ion results are given in Fig. 2 where 

all the initial condi t ions  of  the system are set to 

1 while all the initial condi t ions  in the observer 

are set to 0. The results show that the estimates 

converge to the true states. 

4. C o n c l u s i o n  

In this paper, a recursive algori thm to design 

the adaptive observer for the linear systems that 
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do not have persistently excited regressors. By 

Assumption I, the class of systems that admits 

the observer is different from that of (Besancon, 

2000), and the index r characterizes the class. The 

larger index r implies the unknown parameter has 

larger relative degree from the output y when the 

parameter is regarded as an input. The recursive 

design indicates the higher order dynamics is 

necessary when the index r increases. 

From the proposed recursion algorithm, it se- 

ems easy to develop an automated design package 

on a PC. 
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